Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
researchsquare; 2022.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2378630.v1

RESUMO

Bone marrow plasma cells (BMPC) emerge as a consequence of immune reactions and are considered the source of antibodies that protect against recurrent infectious diseases throughout life. Despite their importance, it remains unclear if these cells reflect different activation environments or the differentiation/maturation stages of their precursors. Here we track the recruitment of plasma cells, generated in primary and secondary immune reactions to SARS-CoV-2 spike protein vaccines, to the human bone marrow. Trajectories based on single cell transcriptomes and antigen-receptor clonotypes of antibody-secreting cells exiting the immune reaction and of those residing in the bone marrow, allow to follow the evolution of the immune response to these vaccines, leading to sequential colonization of these cells to different compartments (clans) of BMPC, and their establishment as long-lived (memory) plasma cells. In primary immune reactions, both CD19low (clans 1 and 4) and CD19high (clan 0) BMPC are generated. In secondary immune reactions, mostly CD19high BMPC of the largest compartment (clan 0) are generated, resulting from the reactivation of memory B lymphocytes. The latter is also observed in vaccinated convalescent individuals and upon recall vaccination against diphtheria/tetanus/pertussis (DTP). Thus, humoral immunological memory, i.e. serum antibodies secreted by long-lived memory BMPC, is generated already in the primary immune response, more so in the secondary, and it represents the evolution of the immune response.


Assuntos
Tétano , Doenças do Sistema Imunitário
2.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.03.24.22272768

RESUMO

Post-acute lung sequelae of COVID-19 are challenging many survivors across the world, yet the mechanisms behind are poorly understood. Our results delineate an inflammatory cascade of events occurring along disease progression within fibrovascular niches. It is initiated by endothelial dysfunction, followed by heme scavenging of CD163+ macrophages and production of CCL18. This chemokine synergizes with local CCL21 upregulation to influence the stromal composition favoring endothelial to mesenchymal transition. The local immune response is further modulated via recruitment of CCR7+ T cells into the expanding fibrovascular niche and imprinting an exhausted, T follicular helper like phenotype in these cells. Eventually, this culminates in the formation of tertiary lymphoid structures, further perpetuating chronic inflammation. Thus, our work presents misdirected immune-stromal interaction mechanisms promoting a self-sustained and non-resolving local immune response that extends beyond active viral infection and leads to profound tissue repurposing and chronic inflammation.


Assuntos
Inflamação , Viroses , COVID-19
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.08.08.455272

RESUMO

The commensal microflora is a source for multiple antigens that may induce cross-reactive antibodies against host proteins and pathogens. However, whether commensal bacteria can induce cross-reactive antibodies against SARS-CoV-2 remains unknown. Here we report that several commensal bacteria contribute to the generation of cross-reactive IgA antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. We identified SARS-CoV-2 unexposed individuals with RBD-binding IgA antibodies at their mucosal surfaces. Conversely, neutralising monoclonal anti-RBD antibodies recognised distinct commensal bacterial species. Some of these bacteria, such as Streptococcus salivarius, induced a cross-reactive anti-RBD antibodies upon supplementation in mice. Conversely, severely ill COVID-19 patients showed reduction of Streptococcus and Veillonella in their oropharynx and feces and a reduction of anti-RBD IgA at mucosal surfaces. Altogether, distinct microbial species of the human microbiota can induce secretory IgA antibodies cross-reactive for the RBD of SARS-CoV-2.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19 , Infecções Pneumocócicas
4.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260803

RESUMO

Objectives Patients with autoimmune inflammatory rheumatic diseases receiving rituximab (RTX) therapy show substantially impaired anti-SARS-CoV-2 vaccine humoral but partly inducible cellular immune responses. However, the complex relationship between antigen-specific B and T cells and the level of B cell repopulation necessary to achieve anti-vaccine responses remain largely unknown. Methods Antibody responses to SARS-CoV-2 vaccines and induction of antigen-specific B and CD4/CD8 T cell subsets were studied in 19 rheumatoid arthritis (RA) and ANCA-associated vasculitis (AAV) patients receiving RTX, 12 RA patients on other therapies and 30 healthy controls after SARS-CoV-2 vaccination with either mRNA or vector based vaccines. Results A minimum of 10 B cells/µL in the peripheral circulation was necessary in RTX patients to mount seroconversion to anti-S1 IgG upon SARS-CoV-2 vaccination. RTX patients lacking IgG seroconversion showed reduced antigen-specific B cells, lower frequency of TfH-like cells as well as less activated CD4 and CD8 T cells compared to IgG seroconverted RTX patients. Functionally relevant B cell depletion resulted in impaired IFNγ secretion by spike-specific CD4 T cells. In contrast, antigen-specific CD8 T cells were reduced in patients independently of IgG formation. Conclusions Patients receiving rituximab with B cell numbers above 10 B cells/µl were able to mount humoral and more robust cellular responses after SARS-CoV-2 vaccination that may permit optimization of vaccination in these patients. Mechanistically, the data emphasize the crucial role of co-stimulatory B cell functions for the proper induction of CD4 responses propagating vaccine-specific B and plasma cell differentiation.


Assuntos
Vasculite , Artrite Reumatoide , Febre Reumática
5.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.04.15.21255550

RESUMO

Patients with kidney failure are at increased risk during the COVID-19 pandemic and effective vaccinations are needed. It is not known how efficient mRNA vaccines mount B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 25 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to 100% seroconversion in HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG positivity in 31 (70.5%) and anti-S1 IgA in 30 (68.2%) of 44, respectively. In contrast, KTR did not develop IgG response except one patient who had prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas these RBD+ B cells were enriched among pre-switch and naive B cells from DP and KTR. Single cell transcriptome and CITE-seq analyses found reduced frequencies of plasmablasts, TCF7+CD27+GZMK+ T cells and proliferating MKI67-expressing lymphocytes among KTR non-responders. Importantly, the frequency and absolute number of antigen-specific circulating plasmablasts in the whole cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, this data indicate that lack of T cell help related to immunosuppression results in impaired germinal center differentiation of B and plasma cell memory. There is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis. One Sentence SummaryKidney transplant recipients and dialysis patients show a markedly diminished humoral response and impaired molecular B cell memory formation upon vaccination with BNT162b2.


Assuntos
COVID-19
6.
Paolo Luzzatto-Fegiz; Fernando Temprano-Coleto; Francois J Peaudecerf; Julien R Landel; Yangying Zhu; Julie A McMurry; Anna Pascual-Reguant; Weijie Du; Ronja Mothes; Chaofan Fan; Stefan Frischbutter; Katharina Habenicht; Lisa Budzinski; Justus Ninnemann; Peter K. Jani; Gabriela Guerra; Katrin Lehmann; Mareen Matz; Lennard Ostendorf; Lukas Heiberger; Hyun-Dong Chang; Sandy Bauherr; Marcus Maurer; Guenther Schoenrich; Martin Raftery; Tilmann Kallinich; Marcus Alexander Mall; Stefan Angermair; Sascha Treskatsch; Thomas Doerner; Victor M Corman; Andreas Diefenbach; Hans-Dieter Volk; Sefer Elezkurtaj; Thomas H. Winkler; Jun Dong; Anja Erika Hauser; Helena Radbruch; Mario Witkowski; Fritz Melchers; Andreas Radbruch; Mir-Farzin Mashreghi; Nehal M Shah; Hemang M Purohit; Cherry K Shah; Monila N Patel; Saket Shah; Smit H Shah; Tehsim Memon; Vishal R Beriwala; Kusum Jashnani; Fatema Ezzy; Simran Agrawal; Rakesh Bhadade; Atish M N; Tushar Madke; Vikash Kavishwar; Ramesh Waghmare; Nitin Valvi; B Thrilok Chander; A Vinaya Sekhar; Akhilesh Kumar Maurya; K Hemanth; K Nagamani; K Sudha; T Ravi Chandra; K Tushara Rao; J Vyshnavi; Rashmi Upadhyay; Shalini Bahadur; Rambha Pathak; Shikha Seth; Rakesh Gupta; Rita Saxena; Preksha Dwivedi; Reeni Malik; Deepti Chourasia; Jaya Lalwani; UM Sharma; JL Marko; Amit Suri; Vijay Kumar; Rajnish Kaushik; Parul Kodan; Bhabani Prasad Acharya; Kuldeep Kumar Gaur; Anubhav Gupta; Prerna Sachdeva; Shruti Dogra; Aikaj Jindal; M Joseph John; Avtar Singh Dhanju; Ranjana Khetrepal; Neeraj Sharma; Neetu Kukar; Divya Kavita; Rajesh Kumar; Rajesh Mahajan; Gurpreet Singh; Jaspreet Kaur; Raminder Pal Singh; Rajni Bassi; Swapneil Parikh; Om Shrivastav; Jayanthi Shastri; Maherra Desai; Shreevatsa Udupa; Varun A Bafna; Vijay Barge; Rajendra Madane; Sheetal Yadav; Sanjeev Mishra; Archana Bajpayee; M K Garg; G K Bohra; Vijaylakshmi Nag; Puneeth Babu Anne; Mohd Nadeem; Pallavi Singh; Ram Niwas; Niranjan Shiwaji Khaire; Rattiram Sharma; Mini p Singh; Naresh Sachdeva; Suchet Sachdev; Rekha Hans; Vikas Suri; L N Yaddanapudi; PVM Lakshmi; Neha Singh; Divendu Bhushan; Neeraj Kumar; Muralidhar Tambe; Sonali Salvi; Nalini Kadgi; Shashikala Sangle; Leena Nakate; Samir Joshi; Rajesh Karyakarte; Suraj Goyanka; Nimisha Sharma; Nikhil Verma; Asim Das; Monika Bahl; Nitya Wadhwa; Shreepad Bhat; Shweta Deshmukh; Vrushali Wagh; Atul Kulkarni; Tanvi Yardi; Ram S Kalgud; Purushottam Reddy; Kavitha Yevoor; Prashanth Gajula; Vivek Maleyur; Medini S; Mohith HN; Anil Gurtoo; Ritika Sud; Sangeeta Pahuja; Anupam Prakash; Parijat Gogoi; Shailja Shukla; D Himanshu Reddy; Tulika Chandra; Saurabh Pandey; Pradeep Maurya; Ali Wahid; Vivek Kumar; Kamlesh Upadhyay; Nidhi Bhatnagar; Nilima Shah; Mamta Shah; Tarak Patel; Ram Mohan Jaiswal; Ashish Jain; Shweta Sharma; Puneet Rijhwani; Naveen Gupta; Tinkal C Patel; Mahesh G Solu; Jitendra Patel; Yash R Shah; Mayur Jarag; Varsha Godbole; Meenakshi Shah; Rikin Raj; Irfan Nagori; Pramod R Jha; Arti D Shah; Gowtham Yeeli; Archit Jain; Rooppreet Kaur Gill; KV Sreedhar Babu; B Suresh Babu; Alladi Mohan; B Vengamma; K Chandra Sekhar; Srinivasulu Damam; K Narsimhulu; C Aparna; G Baleswari; Ravindranath Reddy K; P Chandrasekhar; Sunil Jodharam Panjwani; Pankaj J Akholkar; Kairavi Parthesh Joshi; Pragnesh H Shah; Manish Barvaliya; Milind Baldi; Ashok Yadav; Manoj Gupta; Nitin Rawat; Dilip Chawda; M Natarajan; M Sintha; David Pradeep Kumar; Fathhur Rabbani; Vrushali Khirid Khadke; Dattatray Patki; Sonali Marathe; Clyde D Souza; Vipul Tadha; Satyam Arora; Devendra Kumar Gupta; Seema Dua; Nitu Chauhan; Ajeet Singh Chahar; Joy John Mammen; Snehil Kumar; Dolly Daniel; Ravindraa Singh; Venkatesh Dhat; Yogesh Agarwal; Sohini Arora; Ashish Pathak; Manju Purohit; Ashish Sharma; Jayashree Sharma; Manisha Madkaikar; Kavita Joshi; Reetika Malik Yadav; Swarupa Bhagwat; Niteen D Karnik; Yojana A Gokhale; Leena Naik; Sangita Margam; Santasabuj Das; Alka Turuk; V Saravana Kumar; K Kanagasabai; R Sabarinathan; Gururaj Deshpande; Sharda Sharma; Rashmi Gunjikar; Anita Shete; Darpan Phagiwala; Chetan Patil; Snehal Shingade; Kajal Jarande; Himanshu Kaushal; Pragya Yadav; Gajanan Sapkal; Priya Abraham.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.07.286666

RESUMO

Past experiments demonstrated SARS-CoV-2 inactivation by simulated sunlight; models have considered exclusively mechanisms involving UVB acting directly on RNA. However, UVA inactivation has been demonstrated for other enveloped RNA viruses, through indirect mechanisms involving the suspension medium. We propose a model combining UVB and UVA inactivation for SARS-CoV-2, which improves predictions by accounting for effects associated with the medium. UVA sensitivities deduced for SARS-CoV-2 are consistent with data for SARS-CoV-1 under UVA only. This analysis calls for experiments to separately assess effects of UVA and UVB in different media, and for including UVA in inactivation models. Key words: SARS-CoV-2, COVID-19, environmental persistence, sunlight, UVA, UVB, modeling, inactivation methods, photobiology


Assuntos
COVID-19
7.
Benson C. Iweriebor; Olivia S. Egbule; Samuel O Danso; Eugene Akujuru; Victor T Ibubeleye; Christabel I Oweredaba; Theodora Ogharanduku; Alexander Manu; Modeline Nicholas Longjohn; Chaofan Fan; Stefan Frischbutter; Katharina Habenicht; Lisa Budzinski; Justus Ninnemann; Peter K. Jani; Gabriela Guerra; Katrin Lehmann; Mareen Matz; Lennard Ostendorf; Lukas Heiberger; Hyun-Dong Chang; Sandy Bauherr; Marcus Maurer; Guenther Schoenrich; Martin Raftery; Tilmann Kallinich; Marcus Alexander Mall; Stefan Angermair; Sascha Treskatsch; Thomas Doerner; Victor M Corman; Andreas Diefenbach; Hans-Dieter Volk; Sefer Elezkurtaj; Thomas H. Winkler; Jun Dong; Anja Erika Hauser; Helena Radbruch; Mario Witkowski; Fritz Melchers; Andreas Radbruch; Mir-Farzin Mashreghi; Nehal M Shah; Hemang M Purohit; Cherry K Shah; Monila N Patel; Saket Shah; Smit H Shah; Tehsim Memon; Vishal R Beriwala; Kusum Jashnani; Fatema Ezzy; Simran Agrawal; Rakesh Bhadade; Atish M N; Tushar Madke; Vikash Kavishwar; Ramesh Waghmare; Nitin Valvi; B Thrilok Chander; A Vinaya Sekhar; Akhilesh Kumar Maurya; K Hemanth; K Nagamani; K Sudha; T Ravi Chandra; K Tushara Rao; J Vyshnavi; Rashmi Upadhyay; Shalini Bahadur; Rambha Pathak; Shikha Seth; Rakesh Gupta; Rita Saxena; Preksha Dwivedi; Reeni Malik; Deepti Chourasia; Jaya Lalwani; UM Sharma; JL Marko; Amit Suri; Vijay Kumar; Rajnish Kaushik; Parul Kodan; Bhabani Prasad Acharya; Kuldeep Kumar Gaur; Anubhav Gupta; Prerna Sachdeva; Shruti Dogra; Aikaj Jindal; M Joseph John; Avtar Singh Dhanju; Ranjana Khetrepal; Neeraj Sharma; Neetu Kukar; Divya Kavita; Rajesh Kumar; Rajesh Mahajan; Gurpreet Singh; Jaspreet Kaur; Raminder Pal Singh; Rajni Bassi; Swapneil Parikh; Om Shrivastav; Jayanthi Shastri; Maherra Desai; Shreevatsa Udupa; Varun A Bafna; Vijay Barge; Rajendra Madane; Sheetal Yadav; Sanjeev Mishra; Archana Bajpayee; M K Garg; G K Bohra; Vijaylakshmi Nag; Puneeth Babu Anne; Mohd Nadeem; Pallavi Singh; Ram Niwas; Niranjan Shiwaji Khaire; Rattiram Sharma; Mini p Singh; Naresh Sachdeva; Suchet Sachdev; Rekha Hans; Vikas Suri; L N Yaddanapudi; PVM Lakshmi; Neha Singh; Divendu Bhushan; Neeraj Kumar; Muralidhar Tambe; Sonali Salvi; Nalini Kadgi; Shashikala Sangle; Leena Nakate; Samir Joshi; Rajesh Karyakarte; Suraj Goyanka; Nimisha Sharma; Nikhil Verma; Asim Das; Monika Bahl; Nitya Wadhwa; Shreepad Bhat; Shweta Deshmukh; Vrushali Wagh; Atul Kulkarni; Tanvi Yardi; Ram S Kalgud; Purushottam Reddy; Kavitha Yevoor; Prashanth Gajula; Vivek Maleyur; Medini S; Mohith HN; Anil Gurtoo; Ritika Sud; Sangeeta Pahuja; Anupam Prakash; Parijat Gogoi; Shailja Shukla; D Himanshu Reddy; Tulika Chandra; Saurabh Pandey; Pradeep Maurya; Ali Wahid; Vivek Kumar; Kamlesh Upadhyay; Nidhi Bhatnagar; Nilima Shah; Mamta Shah; Tarak Patel; Ram Mohan Jaiswal; Ashish Jain; Shweta Sharma; Puneet Rijhwani; Naveen Gupta; Tinkal C Patel; Mahesh G Solu; Jitendra Patel; Yash R Shah; Mayur Jarag; Varsha Godbole; Meenakshi Shah; Rikin Raj; Irfan Nagori; Pramod R Jha; Arti D Shah; Gowtham Yeeli; Archit Jain; Rooppreet Kaur Gill; KV Sreedhar Babu; B Suresh Babu; Alladi Mohan; B Vengamma; K Chandra Sekhar; Srinivasulu Damam; K Narsimhulu; C Aparna; G Baleswari; Ravindranath Reddy K; P Chandrasekhar; Sunil Jodharam Panjwani; Pankaj J Akholkar; Kairavi Parthesh Joshi; Pragnesh H Shah; Manish Barvaliya; Milind Baldi; Ashok Yadav; Manoj Gupta; Nitin Rawat; Dilip Chawda; M Natarajan; M Sintha; David Pradeep Kumar; Fathhur Rabbani; Vrushali Khirid Khadke; Dattatray Patki; Sonali Marathe; Clyde D Souza; Vipul Tadha; Satyam Arora; Devendra Kumar Gupta; Seema Dua; Nitu Chauhan; Ajeet Singh Chahar; Joy John Mammen; Snehil Kumar; Dolly Daniel; Ravindraa Singh; Venkatesh Dhat; Yogesh Agarwal; Sohini Arora; Ashish Pathak; Manju Purohit; Ashish Sharma; Jayashree Sharma; Manisha Madkaikar; Kavita Joshi; Reetika Malik Yadav; Swarupa Bhagwat; Niteen D Karnik; Yojana A Gokhale; Leena Naik; Sangita Margam; Santasabuj Das; Alka Turuk; V Saravana Kumar; K Kanagasabai; R Sabarinathan; Gururaj Deshpande; Sharda Sharma; Rashmi Gunjikar; Anita Shete; Darpan Phagiwala; Chetan Patil; Snehal Shingade; Kajal Jarande; Himanshu Kaushal; Pragya Yadav; Gajanan Sapkal; Priya Abraham.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.08.287201

RESUMO

SARS-CoV-2 is a betacoronavirus, the etiologic agent of the novel Coronavirus disease 2019 (COVID-19). In December 2019, an outbreak of COVID-19 began in Wuhan province of the Hubei district in China and rapidly spread across the globe. On March 11th, 2020, the World Health Organization officially designated COVID-19 as a pandemic. Across the continents and specifically in Africa, all index cases were travel related. Thus, it is crucial to compare COVID-19 genome sequences from the African continent with sequences from COVID-19 hotspots (including China, Brazil, Italy, United State of America and the United Kingdom). To identify if there are distinguishing mutations in the African SARS-CoV-2 genomes compared to genomes from other countries, including disease hotspots, we conducted in silico analyses and comparisons. Complete African SARS-CoV-2 genomes deposited in GISAID and NCBI databases as of June 2020 were downloaded and aligned with genomes from Wuhan, China and other SARS-CoV-2 hotspots. Using phylogenetic analysis and amino acid sequence alignments of the spike and replicase (NSP12) proteins, we searched for possible targets for vaccine coverage or potential therapeutic agents. Our results showed a similarity between the African SARS-CoV-2 genomes and genomes in countries including China, Brazil, France, the United Kingdom, Italy, France and the United States of America. This study shows for the first time, an in-depth analysis of the SARS-CoV-2 landscape across Africa and will potentially provide insights into specific mutations to relevant proteins in the SARS-CoV-2 genomes in African populations.


Assuntos
COVID-19
8.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.09.04.20188169

RESUMO

The human immune response to SARS-CoV-2 infection is highly variable, with less than 10% of infections resulting in severe COVID-19 requiring intensive care unit (ICU) treatment. Here we have analyzed the dynamics of the adaptive immune response in COVID-19 ICU patients at the level of single cell transcriptomes and B cell and T cell receptor (BCR, TCR) repertoires. Early after ICU admission, before seroconversion in response to SARS-CoV-2 spike protein, patients generate activated peripheral B cells with a type 1 interferon-induced gene expression signature. After seroconversion, patients display circulating activated B cells expressing an IL-21-induced gene expression signature and mainly IgG1 and IgA1, two isotypes induced by IL-21 and TGF-{beta}, respectively. In sustained COVID-19, the persistent immune reaction is shifted to IgA2-expressing activated peripheral B cells, displaying somatic hypermutation, and expressing TGF-{beta}-induced signature genes, like IgA germline transcripts. The switch from an IgG1 to an IgA2-dominated B cell response correlates with the appearance of SARS-CoV-2 reactive follicular T helper cells expressing IL-21 and/or TGF-{beta} in the blood. Despite the continued presence of IgA2-expressing B cells and IgA antibodies in the blood of progressed COVID-19 patients, IgA2 secreting cells were scarce in the lungs of deceased COVID-19 patients. In summary, in severely affected COVID-19 patients SARS-CoV-2 triggers chronic immune reactions which are controlled by TGF-{beta}, with most of the activated B cells being no longer specific for the SARS-CoV-2 spike protein and its receptor binding domain, nor for nucleoprotein. TGF-{beta} may candidate as a target to ameliorate detrimental immunopathology in those patients.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA